If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7x^2-2x+28=0
a = -7; b = -2; c = +28;
Δ = b2-4ac
Δ = -22-4·(-7)·28
Δ = 788
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{788}=\sqrt{4*197}=\sqrt{4}*\sqrt{197}=2\sqrt{197}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{197}}{2*-7}=\frac{2-2\sqrt{197}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{197}}{2*-7}=\frac{2+2\sqrt{197}}{-14} $
| 9x/5=45 | | 8x–5=7x+4 | | 2×(a+3)+(a-5)×4=3×(4a-5)+5×(-1-a) | | 2x–5=6x+2 | | 8x–5=6x+2 | | 4x=-3=-17 | | 2(a+3)+(a-5)×4=3(4a-5)+5(-1-a) | | 32+18-5.x=0 | | 2z/9=-6 | | 5x/4=50 | | 8x–18=6x+2 | | 5x-2x=-7-2 | | 2x^2(x+1)=8(x+1) | | 2x(x^2–1)=3(x^2–1) | | 50+x=25+11x | | 8+(6w-(3w+4)-5)=15w-(9+(7w-3)-4w)-4 | | 9x^2-51x=0 | | 12^(2x)-8(36^x)=0 | | x+9=20x-3 | | X/2-1=x/4+1 | | 3(2x+3)=x(2x+3) | | –3x+5=−4 | | 7x-8=x-12 | | 3x-5=7,x=4 | | 3/5x-19/30=-2/5x-5/6 | | 2x+19=9x-15 | | t+13=28 | | 3e/4=3,9 | | -7(y-8)=-8y | | 2,5x^2-10=0 | | 1.25X^2+120x+1=0 | | (x*3)+(x+0,50)=5,30 |